您好,歡迎來到北京博普特科技有限公司!
Product center
Plant Phenomics | 基于葉綠素熒光圖像的高通量玉米圖像分割和性狀提取
玉米是人們生活中重要的作物,它產(chǎn)量高、用途廣,廣泛應用于食品、飼料及生物質(zhì)能源的生產(chǎn)中。為了應對未來幾十年世界人口快速增長所帶來的物質(zhì)需要,人類對玉米產(chǎn)量的需求正在不斷增加。目前,研究者們?yōu)榱藴p輕氣候和環(huán)境條件變化對玉米產(chǎn)量的影響,已在識別、改良和培育玉米新品種上做出了許多努力。
形態(tài)變化是植物應對干旱脅迫所作出的復雜調(diào)控之一,并且已被廣泛研究。然而,由于缺乏對表型性狀尤其是莖葉水平性狀的高通量提取,使得從分子層面對玉米干旱脅迫響應的解讀明顯落后于植物生理學發(fā)展的整體趨勢。目前,大部分植物表型數(shù)據(jù)都是通過手動以及有破壞性的方式采集的,人工采集數(shù)據(jù)的通量低、費時費力、數(shù)據(jù)可靠性也不盡人意,且人工采集局限于特定的生育時期,無法反映干旱脅迫對全生育期內(nèi)玉米植株的總體影響。
集成式高通量表型(HTP)分析設(shè)施的出現(xiàn),使得連續(xù)、自動化、無損和多模態(tài)測量植物性狀成為了可能,并提高了表型數(shù)據(jù)的時空分辨率。在大多數(shù)高通量表型設(shè)施中,植株都生長在給定體積的盆內(nèi)。在林業(yè)或園藝領(lǐng)域,在不影響種植效果的前提下縮小盆體積一直是研究的重點,但在表型相關(guān)研究中少有對盆栽大小對植株性能影響的研究。
近日,Plant Phenomics 在線發(fā)表了題為High-Throughput Corn Image Segmentation and Trait Extraction Using Chlorophyll Fluorescence Images的研究論文。
在該文中,作者基于一種基于RGB圖像的高通量植物表型分析系統(tǒng),充分利用了葉綠素熒光信號對玉米植株進行了分割,還開發(fā)了能夠提取玉米莖葉性狀的圖像分析算法(Figure 3,4),并進行了實證試驗(Figure 1),以驗證提取到的性狀在評估玉米植株干旱脅迫響應中的效用。
實證試驗的數(shù)據(jù)記錄了玉米植株在不同的水處理或不同大小的盆中生長的表現(xiàn)。結(jié)果表明,基于植株熒光圖像的高通量分析是有效且可靠的(Figure 7);此外,在環(huán)境受控設(shè)施中進行植物表型試驗時,使用統(tǒng)一大小的種植盆也十分重要。
Figure 1: Proof-of-concept experimental design.
Figure 3: Segmentation and skeletonization: the image analysis processes started with building the binary mask using the gray-scale chlorophyll fluorescence (CF) images; subsequently, the skeleton was created as a two-dimensional wireframe of the plant (image scale 1/4).
Figure 4: Canopy traits extraction: extraction based on the points of interest calculated in the skeleton.
Figure 7: Image-based vs. ground-truth measurements.
——推薦閱讀——
The Application of UAV-Based Hyperspectral Imaging to Estimate Crop Traits in Maize Inbred Lines
Plant Phenomics | 無人機高光譜影像在玉米自交系作物性狀估算中的應用
High-Throughput Phenotyping of Dynamic Canopy Traits Associated with Stay-Green in Grain Sorghum
Plant Phenomics | 高通量表型分析滯綠相關(guān)的高粱動態(tài)冠層性狀
《植物表型組學》(Plant Phenomics)是由南京農(nóng)業(yè)大學和美國科學促進會(AAAS)合作創(chuàng)辦的英文學術(shù)期刊,于2019年1月正式上線發(fā)行,是Science合作出版的第二本期刊。采用開放獲取形式,刊載植物表型組學交叉學科熱點領(lǐng)域具有突破性科研進展的原創(chuàng)性研究論文、綜述、數(shù)據(jù)集和觀點。具體范圍涵蓋高通量表型分析技術(shù),基于圖像分析和機器學習的表型分析研究,提取表型信息的新算法,作物栽培、植物育種和農(nóng)業(yè)實踐中的表型組學新應用,與植物表型相結(jié)合的分子生物學、植物生理學、統(tǒng)計學、作物模型和其他組學研究,表型組學相關(guān)的植物生物學等。期刊已被CABI、CNKI、DOAJ、PMC、SCIE和Scopus數(shù)據(jù)庫收錄。
說明:本文由《植物表型組學》編輯部負責組稿。
中文內(nèi)容僅供參考,一切內(nèi)容以英文原版為準。
編輯:張威(實習)、鞠笑、孔敏
審核:尹歡
上一篇:談談自動氣象站的故障問題